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Thionine-mediated chemistry of carbon nanotubes
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Abstract

Thionine can be employed as a kind of useful functional molecule for the non-covalent functionalization of carbon nanotubes, as

it shows a strong interaction with either SWNTs or MWNTs. Attachment of thionine molecules onto the sidewalls of carbon

nanotubes would improve the solubility and lower the thermal stability of original carbon nanotubes. More importantly, it may

functionalize the surface of carbon nanotubes with rich NH2 groups and therefore open up more opportunities for the surface

chemistry of carbon nanotubes. It has been proved that through the modification of small thionine molecules, other kinds of species

such as cytochrome C and TiO2 nanoparticles could be easily and selectively introduced onto the surface of carbon nanotubes. With

this approach, SWNTs or MWNTs can be tailored with desired functional structures and properties.

� 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

Surface chemistry modifications are useful and criti-

cal to manipulate the properties of carbon nanotubes

and develop their potential applications [1–4]. Recently,

some attempts have been made to attach biological

molecules such as, peptide [5], enzymes [6], antibodies [7]

and DNA [8] onto the sidewalls of SWNTs to fabricate

highly sensitive biosensors, and to anchor quantum dots

[9] and semiconductive nanoparticles [10] on SWNTs to
form nanojunction structures for the development of

nanoelectronic and optical devices. Chemical processing

of carbon nanotubes with desired functionalized sur-

faces and manipulated properties will be thus important.

Refluxing in oxidative acids [11], aniline solution [12], or

reacting with highly active species [13–19] are generally

used routes for the covalent functionalization of carbon

nanotubes at ends or/and side-walls. As carbon na-
notubes are chemically inert, covalent functionalization

of carbon nanotubes is often difficult and uncontrolla-

ble, and its efficiency often largely depends upon the

concentration of defective sites in nanotube structures

[2]. In a sense, through covalent functionalization, it is
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easy to destroy the sp2 structures of carbon nanotubes,

thereby diminishing their pristine mechanical and elec-
tronic properties. In contrast, non-covalent functional

strategies seem a more friendly and effective alternative

for this purpose. Some molecules including small gas

molecules [1], anthracene derivatives [20–22], and poly-

mer molecules [3,23] have been found liable to absorb

onto or wrap around SWNTs. The presence of such

non-covalent interactions may modify the native con-

ductance, semiconductivity and solubility of carbon
nanotubes remarkably. As a result, it may be potentially

useful for the chemical tailoring of carbon nanotubes [1–

3]. In this present study, we found that carbon na-

notubes, especially single-walled nanotubes had a strong

interaction with thionine molecules. Thonine is a small

planar molecule and has two –NH2 groups symmetri-

cally distributed on each side. Functionalization of

carbon nanotube with thionine molecules has been
shown to be very simple and useful for further intro-

ducing other molecules onto tube surfaces and enriching

the chemistry of carbon nanotubes.
2. Experimental

The SWNT sample used in this work was synthesized

by methane CVD using MgO supported Fe catalysts as

described in a previous study [24]. The purity of SWNTs
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Fig. 1. The chemical structure of thionine.
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was higher than 90% after purification in 37% HCl. For

adsorption procedures, SWNT aqueous suspension were

mixed and sonicated with thionine (purchased from
Shanghai chemical company and used as received, the

chemical structure was shown in Fig. 1) solution (10 mg/

ml) at room temperature for at least 12 h. The carbon

nanotube samples were then filtered with a 1.2 lm dia-

meter pore membrane, thoroughly rinsed with the sol-

vent and dispersed in a desired solvent or on a silicon

surface for characterization. Adsorption and subsequent

introduction of other kinds of molecules onto nanotubes
were preferably carried out directly on the substrate

surface, as it may avoid some possible influence on the

modified carbon nanotubes during further procedures.

TGA was conducted using a sample of about 5 mg

which was heated at a rate of 10 �C/min from 30 to 800

�C in airflow.
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Fig. 2. UV spectra of thionine and thionine modified SWNTs solu-

tions.
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Fig. 3. Raman spectra of thionine (a) and thioinine coated SWNTs

(b).
3. Results and discussion

Thionine is a kind of purple dye, which can be easily

dissolved in water and ethanol. When a few drops of

thionine solution (2 mg/ml) were added to a SWNT
suspension, the purple color of the solution would soon

disappear in a few mins, implying that carbon nanotu-

bes showed a strong tendency to absorb thionine mol-

ecules. It was observed that more than 2 mg thionine

could be absorbed by 1 mg tube sample. The high ad-

sorption capacity of SWNTs, on one hand, can be un-

derstood with the fact that SWNTs exhibit higher

specific surface areas owing to their hollow and tubu-
lar structures. On the other hand, the high quantity of

thionine absorbed by SWNTs may be partly due to

the adsorption of thionine aggregates. Similar results

could also be obtained with MWNTs. When carbon

nanotubes have the possibilities to interact with other

molecules, it may result in different results. For macro-

molecules, such as polymers or biological molecules,

they could probably wrap around tubes or stand on the
sidewalls of tubes [2,8]. In the case of small molecules,

the situation would be quite different, small molecules

could not only cover the side-walls of individual

MWNTs (typical diameter range from 10 to 20 nm), but

also be able to penetrate into the interior of the tubes.

This can be clearly confirmed by TEM characterization

(no micrographs are shown). Some black spots or blocks
could be observed in the tubes after their interaction

with thionine molecules. They often moved or dis-

appeared in the interior of the tubes under e-beam ir-

radiation. The movement and disappearance of these
black spots was evidently attributed to the evaporation

of absorbed thionine solution or thionine molecules

themselves.

Fig. 2 shows the UV spectra of thionine solution and

thionine modified SWNTs suspended solution. Pure

thionine aqueous solution has two characteristic ad-

sorption peaks, one in visible region around 600 nm, the

other located in UV region around 250 nm. The two
peaks can be also observed in thionine modified SWNTs

solution, indicating the presence of thionine molecules

on SWNTs. Moreover, the obvious red shift for the

peak at 600 nm and blue shift for the other peak at 250

nm provide the further evidence on the interaction be-

tween SWNTs and thionine molecules. In addition, as

shown in Fig. 3, the similar Raman spectra of SWNTs

and thionine coated SWNTs revealed that the there was
little harm to the native structure and properties of

thionine molecules after its interaction with SWNTs.

It thus implied that their strong interactions ought to
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result from a p–p stacking force between these two kinds

of conjugated frames.

After its interaction with thionine molecules, the

SWNT solid sample became fluffier and the solubility in
water or other kinds of organic solvents was improved

as well. As shown in Fig. 4, the as-prepared long

SWNTs are always entangled and are difficult to sepa-

rate and disperse in water. After being modified by

thionine molecules, however, SWNTs could be better

wetted and dispersed in aqueous solution. We also

found that the adsorption capacity of SWNTs in aque-

ous solution was obviously higher than that in ethanol
solution, and some of the absorbed thionine molecules

could be washed away when a SWNT sample was rinsed

with ethanol. It is suggested that the numbers of thio-

nine molecules on the surface of individual SWNTs
Fig. 4. SEM images of SWNTs before (upper) and after (down) the

adsorption of thionine molecules.
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Fig. 5. TGA and its differential curves of SWNTs modified with thionine m

with thionine in aqueous solution; (4) SWNTs interacted with thionine in et
could be intentionally manipulated by the selection of

solvents.

On the other hand, the thermal stability of SWNTs

was remarkably decreased after their interaction with
thionine molecules. Fig. 5 shows the TGA and its dif-

ferential curves of pristine SWNTs and modified

SWNTs. The evident weight loss of pristine SWNTs

started around 480 �C and ended at 700 �C with a

combustion peak temperature at 571 �C. When SWNTs

were functionalized with thionine in aqueous solution

(noted as Th-SWNT), the weight loss at less than 400 �C
mainly arose from the contribution of absorbed thionine
molecules. Starting from 400 �C, the contribution of

SWNTs became dominant. The evident weight loss

however ended around 570 �C, much lower than that of

pure SWNTs [20]. Two sharp combustion peaks were

observed at 471 and 492 �C in its TGA curve, and nei-

ther of the characteristic peaks of SWNTs and thionine

was found. If the adsorption event happened in ethanol,

where a lower amount of thionine molecules were ab-
sorbed onto SWNTs, the TGA curve was similar to that

obtained from aqueous solution. Only one combustion

peak emerged at 480 �C, near to the result of thionine

modified SWNTs in aqueous solution, but also quite

lower than that of pristine SWNTs, confirming that the

average thermal stability of SWNTs was greatly dimin-

ished by the introduction of thionine molecules. If 50%

(weight ratio) thionine was mechanically mixed with
SWNTs thoroughly (noted as Th+SWNT), the result-

ing combustion peak temperature of this system was at

540 �C, showing that the thermal stability of SWNTs

was destroyed less severely in contrast to the results of

thionine functionalized SWNTs. Similar results could be

also obtained with multi-walled carbon nanotube sam-

ples. Therefore, it could be concluded that the oxidation

reaction of carbon nanotubes was greatly enhanced by
the adsorption of thionine molecules. Future studies are

underway to determine the origin of this process.

The introduction of NH2 containing thionine mole-

cules on the sidewall of carbon nanotubes may open up

more opportunities for their further chemical processing.
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Fig. 7. TEM and AFM characterization of thionine modified

MWNTs (a) and SWNTs (b and c) showing strong interaction with

TiO2 nanoparticles.
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To illustrate this fact, SWNTs were first well dispersed

on a silicon surface, then immersed in 50 mM thionine

solution in ethanol, 20% glutaraldehyde solution, and

cytochrome C solution in sequence, with the silicon
wafers being washed thoroughly with water or ethanol

and dried in air before they were dipped in another so-

lution. The results of AFM characterization showed that

protein molecules were successfully, densely and uni-

formly attached onto the sidewalls of each of individual

SWNTs (Fig. 6(a)). The attachment of protein mole-

cules onto SWNTs was achieved via a condensation

reaction between thionine and protein molecules. If
without thionine adsorption step, fewer protein mole-

cules were attached onto SWNTs. Similar results could

be observed with MWNT sample (Fig. 6(b)). When a

few drops of glutaraldehyde solution and cytochrome C

solution were successively added into pure and modified

MWNT suspended solutions respectively, protein mol-

ecules were found accumulating on the sidewalls of most

of modified tubes. However, no protein molecules were
captured onto pure tubes, their clusters were found

randomly scattered around tubes. Therefore, thionine

functionalization offers more possibilities to enrich the

surface chemistry of carbon nanotubes. During this

process, glutaraldehyde was used as a bifunctional re-

agent [25]. If without glutaradehyde, we see proteins

randomly scattered on a TEM grid (micrographs not

shown).
Fig. 6. AFM image of SWNTs (a) and SEM image of MWNTs (b)

after their interaction with cytochrome C molecules, inset is a contact

AFM image of SWNTs coated with adsorbed thionine molecules.
Other kinds of inorganic molecules could be also at-

tached onto the surface of carbon nanotubes. Owing to

the unique interaction between TiO2 nanoparticles and

NH2-terminated contained thionine [26], TiO2 nano-

particels with particle sizes less than 10 nm were pref-
erentially absorbed onto modified MWNTs instead of

pure tubes when a TiO2 suspension solution was drop-

ped into carbon nanotube suspended solutions (Fig.

7(a)). In addition, as –NH2 functionalized surface was

found specific to tetra-n-butyl titanium (TBT) precur-

sors [27], thionine modified individual SWNTs may

serve as useful sites or templates for the formation of

thin nanowire materials. Thionine modified SWNT
sample on silicon surface was intentionally immersed

into TBT/isopropyl alcohol solution, washed and then

put into distilled water to hydrolyze adsorbed Ti pre-

cursor molecules. Fig. 7(b and c) show the AFM images

of hydrolyzed SWNTs, where it could be observed that

each individual SWNTs was densely surrounded by a

layer of Ti oxide particles, no matter how thin or how

thick the tubes were. Under this condition, this would be
another feasible route to prepare Ti oxide nanotube

materials. The versatility of this method can be extended

to other systems in which the target molecules have

specific interaction with NH2 groups.
4. Conclusions

Thionine molecules were found to show a strong in-

teraction with individual SWNTs. Interaction with thi-

onine molecules would improve the solubility of carbon

nanotubes in some solvents and greatly decrease their

thermal stability as well. Modification with thionine en-

riched the surfaces of individual SWNTs with NH2
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groups, which would open up more opportunities for

anchoring other molecular species such as protein mol-

ecules and semiconductive nanoparticles onto SWNTs,

and accordingly this strategy would be available for
building various SWNT based heterojunction structures.
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