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Abstract: Graphdiyne (GDY) is a two-dimensional carbon allo-
trope with exceptional physical and chemical properties that is gain-
ing increasing attention. However, its efficient and scalable synthesis
remains a significant challenge. We present a microwave-assisted ap-
proach for its continuous, large-scale production which enables syn-
thesis at a rate of 0.6 g/h, with a yield of up to 90%. The synthesized
GDY nanosheets have an average diameter of 246 nm and a thick-
ness of 4 nm. We used GDY as a stable coating for potassium (K)
metal anodes (K@GDY), taking advantage of its unique molecular
structure to provide favorable paths for K-ion transport. This modi-
fication significantly inhibited dendrite formation and improved the

cycling stability of K metal batteries. Full-cells with perylene-3,4,9,10-tetracarboxylic dianhydride (PTCDA) cathodes showed
the clear superiority of the K@GDY anodes over bare K anodes in terms of performance, stability, and cycle life. The K@GDY
maintained a stable voltage plateau and gave an excellent capacity retention after 600 cycles with nearly 100% Coulombic effi-
ciency. This work not only provides a scalable and efficient way for GDY synthesis but also opens new possibilities for its use
in energy storage and other advanced technologies.
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most promising carbon materials for next-generation
technologies.

Despite these advantages, scaling up the produc-
tion of high-quality GDY powders remains challen-
ging. The primary obstacles include: (1) The instabil-
ity of sp-hybridized carbon atoms, which are prone to
oxidation under high-temperature preparation condi-
tions'""”. (2) The rotational flexibility of C—C in
GDY, makes it difficult to control crystallinity and
thickness"” ", (3) The inefficiency of deprotection
operations
methylsilyl)ethynyl]benzene (HEB-TMS)"™. These

limitations render traditional high-temperature chem-

involving the monomer hexakis-[(tri-

ical vapor deposition (CVD) methods unsuitable for
synthesizing GDY on a large scale.

Various techniques have been developed to over-
come these challenges, with wet chemistry-based con-
finement methods being the most common. These ap-
proaches, such as using graphene as a substrate to fa-
cilitate the in-plane growth of GDY by van der Waals

interactions™”

, improve crystallinity. However, diffi-
culties in separating GDY from the substrate hinder
the isolation of intrinsic GDY"'~’. Other methods,
such as gas/liquid and liquid/liquid interfacial tech-
niques, have also been employed to produce multilay-
er GDY nanosheets. However, substrate limitations
and the inability to control the growth of GDY due to
its structural flexibility have restricted large-scale pro-
duction.

Here, we present a microwave-assisted chemical
synthesis method that enables the continuous, large-
scale production of GDY without the need for sub-
strates. Using HEB-TMS as the precursor, copper
chloride (CuCl) as the catalyst, and N, N-dimethyl-
formamide (DMF) as the solvent, we synthesized
GDY at a rate of 0.6 g/h with yields of up to 90%. The
synthesized GDY nanosheets, with an average diamet-
er of 246 nm and thickness of 4 nm, were then ap-
plied as a stable coating on potassium (K) metal an-
ode. This modification not only provided abundant
binding sites for K™ but also facilitated ionic conduct-
ivity, effectively inhibiting the formation of K dend-
rites and enhancing battery cycling stability. The rap-
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id and continuous synthesis method developed in this
study opens new possibilities for applications of GDY
in various fields, particularly in energy storage sys-

tems.

Trimethylsilylacetylene was purchased from
Woerjimimg (Beijing) Technology Development In-
stitute. Ultradry tetrahydrofuran, N-butyllithium and
hexabromobenzene were obtained from J&K Scientif-
ic. Zinc chloride was purchased from Alfa Aesar.
N,N-Dimethylformamide (DMF) and pyridine were
supplied by Concord Technology. Tetrakis(triphen-
ylphosphine)-palladium (0) and Copper (I) chloride
(CuCl) were obtained from Macklin.

The GDY nanosheets were synthesized by an al-
kynylsilane coupling reaction using microwave-as-
sisted synthesis. First, 25 mg of CuCl was dissolved in
100 mL of DMF and sonicated for 20 min. Then,
300 mg of HEB-TMS was added to the solution and
stirred for 5 min to ensure full dissolution. The reac-
tion mixture was subsequently microwave-treated
(Model: MCR-3) at 135 °C for 5 min. Finally, the
product was washed sequentially with pyridine, acet-
one, and distilled water. Pure GDY nanosheets were

then obtained by freeze-drying.

Morphological and structural characterization
was performed using transmission electron micro-
scopy (FEI Tecnai F20 electron microscope operating
at 200 kV) and atomic force microscopy (Bruker Di-
mension Icon, Scan Asyst) images were obtained with
a height sensor. Raman spectra were recorded using a
Horiba HR800 Raman system with a laser excitation
wavelength of 532 nm and a spot size of approxim-
ately 1 um. X-ray photoelectron spectroscopy meas-
urements were conducted with a Kratos Axis Ultra-
DLD spectrophotometer (AXIS Supra, Kratos Analyt-
ical Ltd.) using monochromatic Al X-ray under low
pressure (5x107° to 1x10™* mmL/g). X-ray diffraction
(XRD) patterns were characterized by Rigaku (Smat-
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Lab SE, Japan) in the 26 range of 10°-90°. The ther-
mogravimetric analysis (TGA) was obtained on a
Q600 SDT withunder the atmosphere of nitrogen at a

heating rate of 10 K min™.

2D homogeneous synthesis of GDY presents
several challenges, primarily due to the competition
between in-plane and out-of-plane growth. From a
kinetic perspective, three-dimensional (3D) spherical
growth typically occurs faster than 2D in-plane
growth. Thermodynamically, staggered structures of-
ten reduce repulsion between chemical bonds, favor-
ing out-of-plane growth"" 1. To better understand the
growth process of GDY and guide experimental
design, we conducted theoretical calculations on the
coupling of hexaethynylbenzene (HEB) monomers
(Fig. S1). The energy differences between HEB di-
mers with rotation angles of 0°, 30°, 60°, and 90° are
negligible, suggesting low rotational barriers (Fig.
S2). However, the energy of the HEB trimer at 0° ro-
tation angle is significantly lower than that of other
rotated configurations, with energy differences of
0.34 eV for a 0°-30° rotation and 0.45 eV for a 90°-
90° rotation (Fig. la and Fig. 1b). This indicates that
the most stable configuration occurs with a 0° rota-
tion. The conjugated triangle of the alkyne and ben-

zene rings locks the structure in-plane, a phenomenon
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Microwave-enabled in-plane growth
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Fig. 1

known as the bond-planarity effect. This structure sta-
bility is further enhanced by an increase in conjugate
enthalpy, leading to a significant extension of delocal-
ization stability across the entire 2D GDY structure.

Building on these insights, we utilized mi-
crowave assistance to rapidly increase the temperat-
ure of the polar solvent, promoting the coupling reac-
tion and facilitating the fast formation of the first-lay-
er GDY conjugated rings (the HEB trimer). This ap-
proach reduces the possibility of rotation between the
dimers and accelerates in-plane growth. For the
second layer of GDY, the energy difference between
the most stable in-plane configuration and the rotated
90° dimer is approximately 1.17 eV (Fig. S3). The en-
ergy differences for 30° and 60° rotations are 0.99 and
1.14 eV, respectively. The underlying template en-
hances the local concentration of HEB monomers,
leading to faster in-plane growth. The interlayer van
der Waals forces, analogous to those in previously re-
ported graphene templates, promote this in-plane
growth under microwave irradiation.

The rapid, continuous, and substrate-free prepar-
ation process of GDY nanosheets is depicted in
Fig. lc. The reaction utilizes HEB-TMS as the pre-
cursor, CuCl as the catalyst, and DMF as the solvent.
Upon microwave irradiation, the polar DMF solvent
undergoes rapid molecular vibration, raising the tem-

perature quickly throughout the reaction system. Un-
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Microwave-enabled rapid, continuous, and substrate-free synthesis of GDY nanosheets. (a) Schematic diagram of microwave-enabled in-plane growth

of GDY. (b) Energy differences of the HEB trimer at various rotation angles: 90°-90°, 0°-30°, and 0°-0°. (c) Microwave-assisted continuous synthesis of GDY.

Photographs of (d) 200 mL GDY suspension and (¢) GDY powder after freeze-drying
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der Cu(I) catalysis, the protective group of HEB-TMS

31 Reductive

is eliminated, forming an intermediate
elimination reactions then occur, producing 1,3-
butadiyne species, which facilitate the rapid genera-
tion of GDY trimers that lock the structure in-plane. A
mixed solution of monomers and catalysts is intro-
duced at one end of the pipe, and GDY powder is col-
lected at the opposite end under continuous mi-
crowave irradiation. This design enables the rapid,
continuous, and substrate-free synthesis of GDY, with
a yield exceeding 90% and a production rate of
0.6 g/h under optimized conditions. The resulting sus-
pension (Fig. 1d) is subjected to washing and freeze-
drying to produce GDY powder, as illustrated in
Fig. le.

The morphology and composition of the synthes-
ized powder were characterized using transmission
electron microscopy (TEM), atomic force microscopy
(AFM), and X-ray photoelectron spectroscopy (XPS).
The TEM image (Fig. 2a) reveals uniform nanosheet-
like structures of the as-prepared GDY. The AFM im-

age (insert in Fig. 2a) shows a flat surface, confirm-

ing the few-layer nature of the GDY nanosheets with
a typical thickness of 4 nm. High-resolution TEM
(HRTEM) image (Fig. 2b) displays lattice fringes with
a spacing of 0.47 nm, which aligns with theoretical

[ indicating well-ordered crystal ~struc-

predictions
tures in the GDY nanosheets. The statistical data of
lateral sizes extracted from 70 independent domains
show a narrow distribution centered around 246 nm,
with a range from 185 to 315 nm (Fig. 2c¢).

Fig. 2d reveals that the GDY nanosheets are
primarily composed of carbon (C), aligning well with
the energy-dispersive spectroscopy (EDS) mapping
results (Fig. S4). The high-resolution C 1s XPS spec-
trum (Fig. 2e) exhibits three subpeaks at 284.5, 285.2
and 287.0 eV, corresponding to C—C(sp”), C—C(sp)
and C—O bonds, respectively. The area ratio of sp
and sp® hybridized carbon is approximately 2:1, con-
sistent with the theoretical expectations for GDY. The
small amounts of C—O species may be attributed to
trace impurities or defects in the sample. Raman spec-
troscopy (Fig. 2f) further characterizes the structural
properties of GDY, with the peak at 2172 cm™' corres-
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Fig. 2 Characterization of GDY nanosheets. (a) TEM image of the as-prepared GDY nanosheets. Insert: AFM image of the GDY nanosheets. (b) HRTEM im-
age of GDY nanosheets. (c) Size distribution of the GDY nanosheets, with diameters ranging from 185 to 315 nm, averaging 246 nm. (d) Full XPS spectrum of

GDY nanosheets. (¢) High-resolution C 1s XPS spectrum of GDY nanosheets, with peaks corresponding to C—C(sp?), C—C(sp) and C—O bonds (dotted line:

raw data, solid lines: fitting curves). (f) Raman spectrum of GDY nanosheets, featuring peaks at 2172 cm™' (—C=C—C=C—),

indicating the characteristic structure of GDY
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ponding to the C=C in 1,3-butadiyne, confirming
successful GDY synthesis. The D and G bands at
1419 and 1553 cm', respectively, are attributed to the
aromatic rings. XRD (Fig. S5) and TGA (Fig. S6)
were also performed to verify the crystallinity and the
thermal stability of GDY. Additionally, the specific
surface area of the GDY nanosheets is measured to be
362.9 m*g ' (Fig. S7). All these results demonstrate
that high-quality, few-layer GDY nanosheets were
successfully synthesized by an efficient, microwave-
enabled, rapid, continuous and substrate-free method.

The unique molecular structure of GDY offers
abundant sites for K binding, both adjacent to the
butadiyne within the subnanometer micropores and at
the center of the benzene rings. This microporous
structure also facilitates ion transport by forming ion
tunnels, allowing for efficient K* movement. The
combination of high K affinity, ionically conductive
channels and high surface area makes GDY an ideal
candidate for use as an interfacial protection layer in
K metal batteries.

As a demonstration, here, GDY nanosheets were
applied as a stable coating for K metal anodes, taking
advantage of their unique structure to create favorable
pathways for K transport. The GDY protection layer
was directly painted onto the K metal surface, form-
ing the K@GDY configuration. Symmetric cells us-
ing both K@GDY and bare K foil as electrodes were
assembled in CR2032 coin cells to explore the K
stripping/plating process. A carbonated electrolyte,
consisting of 1 mol L™ potassium bis (fluorosulfonyl)
imide (KFSI) salts dissolved in a 1 : 1 (v/v) mixture
of ethylene carbonate (EC) and diethyl carbonate
(DEC), was employed. This electrolyte composition is
commonly used in potassium-based systems, known
for its stability and ability to support efficient ion
transport during the cycling of K metal batteries.

The long-term stability of K plating/stripping
was assessed through galvanostatic cycling. The cyc-
ling performance and plating/stripping profiles of
K@GDY cells were compared to those of bare K cells
at a current density of 0.5 mA-cm * and a capacity rate
of 0.5 mAh-cm ™ (Fig. 3a). The K@GDY electrode
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exhibited superior, stable plating/stripping behavior
for over 677 h, with a low polarization voltage of ap-
proximately 200 mV (Fig. 3b). In contrast, the sym-
metric cells with bare K electrodes displayed a larger
polarization voltage of approximately 350 mV, show-
ing a significant voltage drop after 150 h due to the
short-circuit. To further evaluate the effectiveness of
the GDY coating, we compared its performance with
other carbon materials, such as graphene (Gr). The
K@Gr symmetric cells showed a higher polarization
voltage of approximately 320 mV after 190 h of cyc-
ling (Fig. S9), confirming the superior inhibiting ef-
fect and electrochemical performance of the GDY
coating. Furthermore, at current densities ranging
from 0.5 to 8 mA-cm > (Fig. 3¢), the K@GDY elec-
trode exhibited a voltage hysteresis consistently be-
low 210 mV, indicating superior stability in polariza-
tion voltage relative to bare K electrodes. The
K@GDY electrode exhibited lower polarization
voltage and maintained stability upon returning to
0.5 mA-cm >, whereas symmetric cells with bare K
electrodes showed a short-circuit.

The effectiveness of the GDY interfacial layer
was further demonstrated by evaluating the morpho-
logy of K stripping/plating. In symmetric cells with
bare K foil, nonuniform K nucleation and deposition
led to the formation of potassium dendrites (Fig. 3d).
After 100 cycles of galvanostatic stripping and plat-
ing at 0.5 mA-cm >, K dendrites and inactive K (dead
K) were clearly visible (Fig. 3¢). However, the K met-
al with the GDY coating effectively eliminated cur-
rent gathering at the dendrite tips, suppressing dendrit-
ic growth (Fig. 3f, g). These results highlight the ef-
fectiveness of GDY nanosheets as a protective interfa-
cial layer that significantly enhances the cycling sta-
bility and safety of K metal batteries by suppressing
dendritic growth and minimizing polarization.

To further showcase the superior performance
of the K@GDY anode, we constructed full cells us-
ing perylene-3,4,9,10-tetracarboxylic ~ dianhydride
(PTCDA) as cathodes (Fig. 4a). The full cell tests
with PTCDA cathodes clearly demonstrate the signi-
ficant advantages of K@GDY anodes over bare K an-
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Fig. 3 Symmetric cell cycling performance for K@GDY and K foil electrodes. (a,b) Cycling performance and plating/stripping profiles of symmetrical
K@GDY and bare K batteries at 0.5 mA-cm > and 0.5 mAh-cm > (c) Rate performance of the bare K and K@GDY with a fixed capacity of 0.5 mAh-cm? at
various rates of 0.5-8 mA-cm 2. (d) Schematic illustration of K plating/stripping behavior on bare K. (¢) SEM image (top-down view) of K deposited on bare K.
(f) Schematic illustration of K plating/stripping behavior on K@GDY. (g) SEM image (top-down view) of K deposited on K@GDY
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Fig. 4 Full cell cycling performance. (a) Schematic illustration of the PDCTA//K@GDY full cell. (b) The long cycle performance of the PDCTA/K@GDY
and PDCTA//bare K at 1 A g'. (c) The charge-discharge curves of the PDCTA/K@GDY and PDCTA//Bare K at 10" cycle at 1 A g'. (d) The charge-dis-
charge curves of the PDCTA/K@GDY at 1%, 20", 50" and 100", at 1 A g™

odes in terms of both stability and performance. The
K@GDY anode retains its capacity over 600 cycles
with nearly 100% Coulombic efficiency (Fig. 4b),
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highlighting the excellent long-term stability and effi-
cient ion transport facilitated by the GDY protection
layer. In stark contrast, the PDCTA//bare K cells ex-
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hibit rapid capacity loss after just 10 cycles, with a
dramatic decline after 200 cycles and eventual short-
circuiting after 300 cycles (Fig. 4b, c).

The galvanostatic charge-discharge profiles show
that the full cells with K@GDY anodes maintain a
stable voltage plateau within a potential range of
1.5 t0 3.5 V vs. K/K" at a current density of 1.0 A g ',
further underscoring the superior electrochemical per-
formance of the GDY-protected K anode (Fig. 4d).
The unique triangular pore structure and high surface
area of the GDY nanosheets effectively reduce local
current density, prevent dendritic growth, and ensure
efficient K-ion diffusion, all of which contribute to the
outstanding stability and cycle life of the K@GDY
anode. These results confirm that GDY-modified K
metal anodes hold great potential for practical applica-
tions in potassium-ion batteries, offering enhanced
cycling performance and safety. The findings emphas-
ize the importance of using GDY as an interfacial pro-
tection layer to ensure stable plating/stripping pro-
cesses, paving the way for more reliable energy stor-

age solutions.

This work developed a microwave-assisted meth-
od for the rapid and continuous synthesis of GDY
nanosheets, achieving uniform dimensions with dia-
meters ranging from 185 to 315 nm and an average
thickness of 4 nm. The microwave-enabled fast coup-
ling reaction helps control the growth process and en-
sure consistency in the nanosheet morphology. The
GDY nanosheets also exhibit a high specific surface
area, which is key factor in their electrochemical per-
formance. As an interfacial layer, GDY effectively in-
hibits the formation of K dendrites during plating and
stripping processes, significantly improving the cyc-
ling stability and safety of K metal batteries.
Moreover, it reduces the accumulation of dead K, en-
hancing the overall efficiency and prolonging the bat-
tery cycle life. This microwave-assisted synthesis ap-
proach provides a scalable and efficient means of pro-
ducing high-quality GDY nanosheets, offering signi-

ficant potential for use in next-generation energy stor-
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age systems.
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