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Abstract
2D transition metal dichalcogenide (TMD) alloys with tunable band gaps have recently gained
wide interest due to their potential applications in future nanoelectronics and optoelectronics.
Here, we report the temperature-dependent photoluminescence (PL) and Raman spectra of
Mo1−xWxS2 monolayers with W composition x=0, 0.29, 0.53, 0.66 and 1 in the temperature
range 93–493 K. We observed a linear temperature dependence of PL emission energy and
Raman frequency. The PL intensity is enhanced at high temperature (>393 K). The temperature
coefficients are negative for both PL and Raman bands, which may result from anharmonicity,
thermal expansion and composition disorder.

Keywords: transition metal dichalcogenide, 2D material, alloy, Raman spectroscopy,
photoluminescence, temperature dependence

Introduction

2D atomic crystal, such as graphene [1–6], BN [7], and
transition metal dichalcogenides (TMDs) MX2 (M=Mo, W,
Nb, Ta; X=S, Se, Te) [8–21] have attracted wide interest in
recent years due to their unique structures, special physical
properties and potential applications. Group VIB TMDs, such
as MoX2 and WX2 (X=S, Se) are especially interesting for
electronic and optoelectronic applications [11, 22–24]
because of their nonzero direct band gap [10, 25] and the
emergence of strong photoluminescence (PL) in single-layer

form [12, 16, 17]. Band gap engineering of 2D materials is of
importance for promising nano-optoelectronics [3, 26–29].
Alloying different TMDs to achieve a tunable band gap in 2D
monolayers has recently been proposed by theoretical calcu-
lations [30, 31] and demonstrated by experiments [32–38].
Knowledge of a material’s thermal properties is critical,
because heat dissipation is one of the most significant con-
straints in the design and fabrication of integrated electronic
circuits [5, 6]. Micro-Raman/PL spectroscopy is a non-
invasive yet powerful technique to characterize the structures
and thermal properties of 2D materials [5]. Here, we present a
study of the temperature dependence of PL and Raman
spectra of Mo1−xWxS2 monolayer alloys (x=0, 0.29, 0.53,
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0.66 and 1) in the temperature range 93–493 K. Both PL
emission and the first-order Raman modes redshift with
increasing temperature. The PL intensity first decreases and
then increases with temperature increase.

Experiment section

Sample preparation

Mo1−xWxS2 single crystals were grown by the chemical vapor
transport method [39, 40] using Mo1−xWxS2 powders (syn-
thesized from Mo, W and S powders) with Br2 as the trans-
port agent at 1030 °C–980 °C. 2H-type layered structures and
alloy compositions for all Mo1−xWxS2 crystals were con-
firmed by x-ray diffraction (XRD) and energy dispersive
x-ray spectroscopy (EDX), respectively, which was reported
previously [39]. Mo1−xWxS2 monolayer samples were
mechanically exfoliated from bulk Mo1−xWxS2 single crystals
using a similar technique employed for graphene [1] and
transferred to the Si/SiO2 (300 nm SiO2) substrates.

Characterization

The location, shape and layer number of the Mo1−xWxS2
flakes were identified by a combination of optical contrast in
an optical microscope image and atomic force microscopy
(AFM) imaging, as shown in our previous work [33].

PL and Raman measurements were performed on a JY
Horiba HR800 micro-Raman/PL system. All spectra were
excited with 514.5 nm laser light and collected in a back-
scattering configuration. We used a 50x objective to focus the
excitation laser on the Mo1−xWxS2 monolayer alloys. The

sample temperature was controlled by a cold-hot cell operated
using a liquid nitrogen source (Linkam THMS600). All
measurements were carried out under ambient conditions at
low excitation power. The power on top of the cold-hot cell
quartz window was below 3 mW. The accuracy of the cell
temperature control was ±1 K.

Results and discussion

The Mo1−xWxS2 monolayer flakes were cleaved from the
corresponding bulk single crystals onto SiO2/Si substrates
(oxide thickness of 300 nm). Optical imaging and AFM
imaging (figures 1(a) and (b)) were used to locate and identify
the Mo1−xWxS2 monolayers, as reported in our previous
work [33].

Figure 2(a) shows a schematic of the experimental setup.
Temperature-dependent PL spectra of the Mo1−xWxS2
monolayer alloys with different W composition x (0, 0.29,
0.53, 0.66 and 1) in the range 93–493 K are shown in
figures 2(b)–(f). For Mo1−xWxS2 monolayer alloys with
x=0, 0.29, 0.53 and 0.66, the PL spectra show one
strong PL peak, i.e. A-exciton emission (low-energy one),
with a weak shoulder B-exciton emission peak at the higher
energy side. The splitting of A-, B-excitons are due to valance
band spin–orbit coupling [12]. The PL spectra of the
WS2 monolayer show only one A-exciton emission peak.
The PL peaks were fitted by Gaussian functions. The
temperature-dependent PL peak intensities and positional
shifts are plotted in figures 3(a)–(c), respectively. For all
Mo1−xWxS2 monolayers, A-exciton emission intensity first
decreases and then increases with increasing temperature.
Generally, temperature-dependent PL intensity can be

Figure 1. (a) Optical and (b) AFM images of a Mo0.47W0.53S2 monolayer.
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Figure 2. Schematic of the experimental setup (a) and temperature-dependent (93–493 K) PL spectra of the Mo1−xWxS2 monolayer alloys
with different W composition x, (b) x=0, (c) x=0.29, (d) x=0.53, (e) x=0.66, (f) x=1.

Figure 3. Temperature-dependent emission intensity of A-exciton (a) and peak positions for (b) A-exciton and (c) B-exciton of the
Mo1−xWxS2 monolayers with different W composition x. The black lines show the fitting results using equation (2).
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expressed by [41]

( ) ( ) ( ( ) ( )) ( )= ´ +I T I k T k T k T 1PL 0 r r nr/

where I0 is the maximum PL intensity as T approaches 0 K,
and ( )k Tr and ( )k Tnr are the temperature-dependent radiative
and nonradiative recombination rates, respectively. The non-
radiative recombination rates ( )k Tnr can be from the defect
trapping rates kdefect and electron relaxation within the con-
duction and valance band krelax [12]. The general trend is that
the PL intensity as well as quantum efficiency dramatically
decrease as the temperature increases, which is attributed to
the thermally activated nonradiative recombination due to the
increased electron–phonon interactions.

At high temperature range (>393 K), the PL intensity is
dramatically enhanced by more than 20 times. This may be
due to defect generation after higher temperatures in which
the defect sites have higher emission efficiency [41]. The as-
exfoliated MoS2 monolayer is normally n-doped, due to the
presence of defects or unintentional substrate doping [13]. We
can deduce that there are two different mechanisms that
simultaneously influence the PL intensity, i.e. radiative
recombination rates and physical/chemical doping. The low
PL intensity for trions at mediate temperature could be con-
nected with faster nonradiative decays [41].

The temperature-dependent emission energy was plotted
in figures 3(b) and (c). Both A- and B-exciton emission
energies redshift as the temperature increases for all the
Mo1−xWxS2 monolayers. The observed decrease in the optical
band gap as a function of temperature is similar to that
observed in semiconductors, which is due to increased elec-
tron–phonon interactions as well as lattice expansion at high
temperatures [42, 43]. The temperature dependence of the
band gap in semiconductors is usually fitted by the empirical
Varshni relation [42], Eg=E0−(αT2)/(T+β), where the
parameters α and β are constants. Here, a simpler analytical
expression is used to fit the temperature dependence of the
energy band gap in the Mo1−xWxS2 monolayer alloys [44],

( ) ( ) ( )= + aE T E T0 2g g

where ( )E 0g is the band gap value as T approaches 0 K, a is
the temperature coefficient of ( )E T .g A negative a value
was observed for the Mo1−xWxS2 monolayer (table 1). For
A-exciton, as W composition changes, a value ranges from
−0.20 to −0.28 meV K−1. For B-exciton, a value ranges
from −0.23 to −0.45 meVK−1. The a value reaches its
maximum value at the intermediate composition alloy, i.e. the
Mo0.47W0.53S2 monolayer.

Figure 4 shows temperature-dependent Raman spectra
(figures 4(a)–(e)) and frequencies (figures 4(f)–(j)) of the
Mo1−xWxS2 monolayers. For the MoS2 monolayer, there is
strong Raman scattering for both ¢E and ¢A1 modes at all
temperatures. For the WS2 monolayer, the Raman intensities
of 2LA(M) +E′ and ¢A1 modes become very weak at high
temperatures (443 and 493 K) (figure 4(e)). The decrease
in Raman intensities at 443 and 493 K may be due to
the oxidization and/or defect generation of the WS2
monolayer.

Figure 4. Temperature-dependent Raman spectra (a)–(e) and the peak positions of the first-order Raman modes ¢A ,1 MoS2-like and WS2-like
( )–( )¢E f j in the Mo1−xWxS2 monolayer alloys with different W composition x (0, 0.29, 0.53, 0.66, 1). The dashed lines in panel (a)-(e) are a

visual guide. The lines in panel (f)-(j) show the fitting results using equation (3).

Table 1. Fitted temperature coefficients for PL emission energies for
the Mo1−xWxS2 monolayers.

x 0 0.29 0.53 0.66 1

αA (meV K−1) −0.20 −0.24 −0.28 −0.24 −0.23
αB (meV K−1) −0.38 −0.35 −0.45 −0.23 /
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All first-order Raman active modes ¢A ,1 MoS2-like ¢E and
WS2-like ¢E redshift as the temperature increases
(figures 4(f)–(j)). The observed temperature-dependent peak
positions can be fitted using the Grüneisen model [45–47]

( ) ( )w w c= +T T 30

where w0 is the frequency as T approaches 0 K and χ is the
first-order temperature coefficient of the Raman modes.
Negative χ values for ¢A1 and ¢E modes in the Mo1−xWxS2
monolayers have been obtained (table 2). The temperature-
dependent Raman shift is attributed to the anharmonic con-
tributions to the interatomic potential energy, mediated by
phonon–phonon interaction [42, 48].

For the MoS2 monolayer, the temperature coefficients of
¢A1 and ¢E modes are −0.017 and −0.025 cm−1 K−1,

respectively, which are close to those of the sapphire sup-
ported MoS2 monolayer (−0.013 cm−1 K−1 for ¢A1 and
−0.017 cm−1 K−1 for )¢E and chemical vapor deposition
(CVD) grown MoS2 monolayer (−0.016 cm−1 K−1 for ¢A1
and −0.013 cm−1 K−1 for )¢E [49, 50]. For the WS2 mono-
layer, the temperature coefficients of ¢A1 and ¢E modes are
−0.009 and −0.010 cm−1 K−1, respectively, which are
close to those of previously reported single-layer WS2
(−0.006 cm−1 K−1 for both ¢A1 and )¢E [51]. For the
Mo1−xWxS2 monolayer with x=0.29, 0.53 and 0.66, the
temperature coefficients of the first-order Raman modes ¢A1
and WS2-like ¢E reach their maximum at x=0.53 (table 2),
which is similar to the trend of temperature coefficient
change of A emission energy. While for the MoS2-like ¢E
mode, the temperature coefficient reaches its minimum
at x=0.53.

Conclusions

We have systematically measured the temperature-dependent
PL and Raman spectra of the Mo1−xWxS2 monolayer with
x=0, 0.29, 0.53, 0.66 and 1. We observed that the PL
intensities of the Mo1−xWxS2 monolayer alloys first decrease
(due to electron–phonon interaction) and then increase with
temperature increasing. The unexpected increase in PL
intensity at high temperature may be attributed to defect
generation at higher temperatures. The PL and Raman peaks
redshift as temperature increases in the temperature range 93
−493 K, which is attributed to the anharmonic effects and
composition disorder.
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