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Exploring atomic defects in molybdenum
disulphide monolayers
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Xixiang Zhang4, Jun Yuan1,3 & Ze Zhang1

Defects usually play an important role in tailoring various properties of two-dimensional

materials. Defects in two-dimensional monolayer molybdenum disulphide may be responsible

for large variation of electric and optical properties. Here we present a comprehensive joint

experiment–theory investigation of point defects in monolayer molybdenum disulphide

prepared by mechanical exfoliation, physical and chemical vapour deposition. Defect species

are systematically identified and their concentrations determined by aberration-corrected

scanning transmission electron microscopy, and also studied by ab-initio calculation. Defect

density up to 3.5� 1013 cm� 2 is found and the dominant category of defects changes from

sulphur vacancy in mechanical exfoliation and chemical vapour deposition samples

to molybdenum antisite in physical vapour deposition samples. Influence of defects on

electronic structure and charge-carrier mobility are predicted by calculation and observed by

electric transport measurement. In light of these results, the growth of ultra-high-quality

monolayer molybdenum disulphide appears a primary task for the community pursuing

high-performance electronic devices.
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T
he success of graphene1,2 offers a paradigm for the
exploration of novel low-dimensional physical
phenomena3 and physical properties in two-dimensional

(2D) crystal systems4,5. However, its intrinsic shortcoming lies in
its zero bandgap, which strongly hinders its application in logical
electronic devices. Among the post-graphene development, 2D
semiconducting molybdenum disulphide and other transition
metal dichalcogenides6,7 have recently appeared on the horizon of
materials science and condensed matter physics. Monolayer MoS2
is a direct-gap semiconductor that exhibits a substantially
improved efficiency in its photoluminescence8,9. Valley
polarization occurs due to significant spin–orbit coupling and
leads to optical circular dichroism10–12 in the monolayer system.
The electronic transport of MoS2-based field effect transistors
(FETs) shows steep sub-threshold swing of 70mVdec� 1 (refs
13–15) and a high on/off ratio up to 108 (ref. 16). A metal-
insulator transition happens when carrier densities reaches
1013 cm� 2, which also increases the effective mobility17–19.
Owing to its unique optical and electric properties, MoS2 is
believed to be a promising candidate as a building block for future
applications in nanoelectronics and optoelectronics6.

Wafer-scale production of atomically thin layers is paramount
for MoS2 to be used as a candidate channel material for electronic
and optoelectronic devices13–19. Among the currently available
preparation methods, mechanical exfoliation (ME) is deemed less
efficient for these large-scale applications, even though it
produces the highest-quality samples exhibiting the best electric
performance. Physical and chemical vapour deposition17,20–25

methods are more compatible for the scalable growth of
high-quality samples. However, the experimentally attainable
mobility is still one or two order-of-magnitude lower than the
theoretical value of 410 cm2V� 1 s� 1 (refs 13,18,26–29). For
back-gated m-MoS2 FET devices, the highest mobility reported so
far reaches 81 cm2V� 1 s� 1 for ME sample28, 45 cm2V� 1 s� 1

for chemical vapour deposition (CVD)17 ando1 cm2V� 1 s� 1

for physical vapour deposition (PVD)25. The major scattering
mechanism for the mobility deterioration has been recently
suggested as due to the presence of plentiful localized band tail
states30 caused by short-range disordered structural defects (such
as vacancies28,31 and grain boundaries32), and Coulomb
traps33,34. However, the roles played by various defects in
electric and optoelectronic properties are yet to be explicitly
understood. There have been few investigations reported
on point defects, mostly vacancies, and grain boundaries in
m-MoS2 (refs 28,30–32,35,36). These studies are, however, often
performed with samples made by preparatory methods, for
example, ME or CVD, which essentially limits the scope of those
studies.

Here we present a systematic investigation of the point defects
in distinctly prepared m-MoS2 by combining atomically resolved
annular dark-field scanning transmission electron microscopy
(ADF-STEM) imaging, density functional theory (DFT) calcula-
tion and electric transport measurements. We observe, for the
first time, that antisite defects with molybdenum replacing
sulphur are dominant point defects in PVD-grown MoS2, while
the sulphur vacancies are predominant in ME and CVD
specimens. These experimental observations are further sup-
ported qualitatively by the growth mechanism and quantitatively
by the defects’ formation energies calculations. The DFT
calculations, in addition, predict the electronic structures and
magnetic properties of m-MoS2 with antisite defects. We also
discuss the influence of defects on the phonon-limited carrier
mobility theoretically, and further examine them by electric
transport in defective m-MoS2-based FETs. Our systematic
investigation of point defects, especially antisites, will further
deepen our understanding of this novel 2D atomically thin

semiconductor and pave the way for the scalable electronic
application of the family of atomically thin transition metal
chalcogenides.

Results
Statistics of point defects. For the purpose of the analysis of
defects and their concentration, we have chosen about ten sam-
ples prepared under the optimized fabrication condition (see the
Methods section and Supplementary Note 1 for the details of
sample synthesis) from each method (ME, PVD and CVD) and
then transferred each sample onto at least two TEM grids inde-
pendently for ADF-STEM characterizations. The crystalline
quality and the choice of samples for statistical analysis are pre-
sented in Supplementary Figs 1–9. Figure 1 summarized the most
significant results obtained from our analysis on these MoS2
samples. For the PVD specimen, antisite defects with one Mo
atom replacing one or two S atoms (MoS or MoS2) are frequently
observed, marked with red dashed circles shown in Fig. 1a, while
the dominant defects for the ME and CVD samples are S
vacancies with one (VS) or two (VS2) S atoms absent, as marked
by green dashed circles in Fig. 1b. As the STEM’s
Z-contrast mechanism37, that is, IBZ1.6–2.0 (I and Z are the
image contrast and atomic number, respectively), predicts, Mo
and S atoms can be unambiguously discriminated, with Mo
(Z¼ 44) showing bright contrast and two superposed S atoms
showing dim contrast in the lattice of m-MoS2. Following a
similar argument and quantitative image analysis, various defects,
for example, MoS or VS where the lattice image presents
abnormal intensity variation, can be clearly identified
individually through direct imaging and their atomic structures
further verified by ab-initio calculations (please refer to
Supplementary Table 1 for details of each atomic defect).

We show the relative importance of each type of point defects
in Fig. 1c,d. Figure 1c presents the total counts of different point
defects based on over 70 atomically resolved ADF-STEM images
for each type, that is, ME, PVD or CVD MoS2 samples. It is found
that the dominant type of point defects in each sample highly
depends on the specific sample preparation method. The VS

vacancy is the predominant point defects in ME and CVD
samples, with its concentration of about (1.2±0.4)� 1013 cm� 2

(Supplementary Fig. 6), close to the results reported previously30.
Atomic defects VMo (one Mo atom missing) and SMo (one S atom
replacing Mo site) were also found, but with much lower
concentrations as shown in Fig. 1c. In contrast, the histogram
also shows that antisite defects MoS2 and MoS are dominant in
PVD samples, with their concentrations higher than that of VS.
The density of MoS2 and MoS reaches (2.8±0.3)� 1013 and
7.0� 1012 cm� 2, corresponding to an atomic percent of
0.8% and 0.21%, respectively (counted on the total number of
all Mo and S atoms). Such a defect concentration is surprisingly
high if the defects were regarded as impurity doping, which is
usually only achieved in degenerate semiconductor38 (for
instance 10� 2B10� 4). It is, therefore, of vital importance to
understand how they modify the electronic properties of m-MoS2
as elucidated below.

Structural characterization of point defects. So far, there
have been few reports concerning the structures of sulphur
vacancies31,39 and their impacts on the electronic transport
properties30,40 of m-MoS2; by contrast, there is still a lack of
detailed knowledge on the antisite defects, which is at such an
unexpected high doping level in PVD samples. Hence, we
focus more on antisite defects. In Fig. 2a–e, we highlight
all the images of the experimentally observed antisite defects
in m-MoS2 (see also Supplementary Fig. 10), which can be
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grouped into two categories. One is the antisite defects with Mo
atom(s) substituting S atom(s), including MoS, MoS2 and Mo2S2
(Fig. 2a–c). The other category is the antisite defects with S atom
occupying the site of Mo, namely SMo and S2Mo (Fig. 2d,e). The
experimental identification of these antisite defects can be further
unambiguously supported by the quantitative image simulation
based on DFT-predicted atomic structures of all antisite defects.
The fully relaxed DFT-predicted atomic structures of antisite
defects were shown in Fig. 2k–t, where the atomic displacement
and structure deformation are explicitly observable, especially for
antisites MoS2 and S2Mo. Associated side views of these relaxed
structures are available in Fig. 2p–t. The ADF image simulations
(Fig. 2f–j) based on the calculated structures fit quite well with the
experimental images shown in Fig. 2a–e, respectively, especially
for the off-centre feature observable in antisites MoS2 and S2Mo,
which can be tentatively attributed to Jahn–Teller distortions.

Energetics of predominant point defects in different m-MoS2.
The distribution of different atomic defects in m-MoS2 certainly
depends on their preparation process. A full exploration of the
growth dynamics requires a comprehensive experiment–theory
joint investigation, which is beyond the scope of the present work,
although it is of fundamental interest. Here we provide a quali-
tative explanation, based on our DFT calculations, to reveal the
microscopic physical mechanism of the preparation-process-
dependent defect formation. The formation energy (DEForm) for
all the point defects are calculated and summarized in Table 1, as
consistent with a previous report35. Here, chemical potentials of
elements Mo and S were employed to calculate the formation
enthalpy (DHForm) of defects. To account for a range of different
possible reservoirs (for example, bulk element or bulk MoS2),
each enthalpy is given with a range, as listed in Table 1. Two
widely used DFT codes (CASTEP41 and VASP (Vienna Ab-initio
Simulation Package)42) are adopted to exploit the full range of

functionality available and demonstrate the consistency of the
calculated results in Table 1.

An ME sample is exfoliated from MoS2 natural mineral. After
the MoS2 mineral was formed and/or extracted, either element S or
Mo of MoS2 is prone to reach a solid–gas phase equilibrium.
Owing to a higher saturated vapour pressure of S, the mineral-form
MoS2 has to release more S than Mo atoms into the gas phase and
thus S is prone to be deficient in MoS2. Reflecting this fact,
vacancies VS and VS2 have the lowest DEForm of 2.12 eV and
4.14 eV, respectively, among all the defects. The formation energies
of all the antisite defects are higher than 5 eV, indicating that the
S-deficient mineral-formMoS2 favours the formation of S vacancies,
leading to the observation of the most common defect of VS,
followed by VS2, and almost no antisite defect in ME samples.

In a typical PVD process, MoS2 precursor is sublimated into
the gas phase with clusters and atoms, carried by Ar gas (mixed
with H2), and then condensed into a solid-phase MoS2. Sulphur
has a larger saturated vapour pressure so that more S atoms in the
gas phase will leave the preparation chamber, thus establishing a
S-deficient and Mo-rich condition. These clusters and atoms are
highly mobile and are thus prone to form an ordered structure of
MoS2 in the lowest total energy. Considering nþ 1 Mo and 2n-1 S
atoms for example, they have two options, namely, forming (i) n
MoS2 units with one MoS antisite or (ii) nþ 1 MoS2 units with
three VS vacancies. The exact value of n does not affect the
energetic difference between these two types of defects. We thus
arbitrarily instantiate n as 107, namely 108 Mo and 213 S atoms
in total. The total energy of the antisite option is � 1,774.83 eV,
while that for the vacancy case is � 1,774.26 eV which is 0.57 eV
less stable than the former. A similar relation also applies to
antisite defect MoS2 with an energy gain of 0.92 eV. A sample
with one antisite MoS or MoS2 shares the same number of Mo and
S atoms with another sample that has three or four S vacancies,
respectively. The formation energies of antisites MoS and MoS2
were, therefore, divided by three and four, respectively, to make
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Figure 1 | Atomic resolved STEM–ADF images to reveal the distribution of different point defects. (a) Antisite defects in PVD MoS2 monolayers. Scale

bar, 1 nm. (b) Vacancies including VS and VS2 observed in ME monolayers, similar to that observed for CVD sample. Scale bar, 1 nm. (c,d) Histograms of

various point defects in PVD, CVD and ME monolayers. Error estimates are given for the dominant defects (more details on the statistics can be found in

Supplementary Fig. 6). ME data are in green, PVD data in red and CVD in blue.
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these energies quantitatively comparable with a single S vacancy,
as required by the comparison with Boltzmann distribution. We
have renormalized DE0Form(MoS)¼ 1.93 eV, DE0Form(MoS2)¼
1.89 eV, which give rise to a ratio of p(MoS2):p(MoS):p(VS)¼
10.5:6.7:1 at the growth temperature of 1,100 K. This ratio is
comparable with the experimental probability density ratio of
MoS2:MoS:VS¼ 9:2.3:1 in PVD samples.

The CVD process is distinctly different from ME or PVD.
Extra S vapour is supplied to replace O in the MoO3 precursor
under an S-rich condition. We suspect that there are small

amount of residual O atoms taking the position of S atoms in the
resulting MoS2 sheets, due to the competition between Mo–O and
Mo–S bonding in the reaction chamber. Our ab-initio calculation,
not shown here, suggests that these O atoms are 1.99 eV less
stable than corresponding 2S and usually tend to desorb into the
gas phase leaving vacancies at the S sites, that is, S vacancies. It is
argued that Mo atoms may jump into the S vacancies and form
Mo antisites. Despite of the S-rich condition, even if Mo is rich in
a certain local environment, Mo atoms may be firmly bonded
with oxygen in the precursor, which strongly limits the diffusion
of Mo, making the formation of Mo antisite from mobile Mo
atom and S vacancy much less likely.

Electronic structures. The electronic structure of point defects
plays a crucial role in determining the electric properties of these
defective m-MoS2. Vacancy VS and its effect on electronic
structures have been recently reported30,35; we thus focus on the
less-studied antisite defects (please refer to Supplementary Fig. 11
for our ADF imaging and DFT calculation of VS). Figure 3 shows
the theoretically predicted band structures and projected density-
of-states of two primary antisites MoS and MoS2. Our results give
a bandgap of 1.73 eV for a defect-free m-MoS2 (Supplementary
Fig. 12), close to the experimentally observed optical bandgap of
1.8 eV (ref. 8). Defect states with nearly flat band dispersion for
MoS2 and MoS reside inside the band gap of a perfect m-MoS2
(Fig. 3a,d). These states mostly comprises the d orbitals
of four Mo atoms around the defect. In addition, the orbital
hybridization of Mo and S atoms results in extended
wavefunctions involving the surrounding atoms, forming a
‘superatom’ with a radius of roughly 6Å, as shown in Fig. 3b,c,f.

Magnetic properties of m-MoS2 have not been reported yet, as
it is believed to be a non-magnetic material. Nevertheless, we did
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Figure 2 | Atomic structures of antisite defects. (a–c) High-resolution STEM–ADF images of antisite MoS, MoS2 and Mo2S2, respectively. The former two

antisites (highlighted by the red dashed rectangle in k) are dominant in PVD-synthesized MoS2 single layers. Scale bar, 0.5 nm (d,e) Atomic structures of

antisite defects SMo and S2Mo, respectively. (f–j) Simulated STEM images based on the theoretically relaxed structures of the corresponding point defects in

(a–e), using simulation software QSTEM49. (k–t) Relaxed atomic model of all antisite defects in a–e through DFT calculation, with top and side views,

respectively. Light blue, Mo atoms; gold, S atoms. For ease of comparison, we have presented the simulated ADF images before the atomistic schematics of

the DFT calculated structures.

Table 1 | Formation energy (DEForm) and enthalpy (DHForm)
of considered point defects.

CASTEP VASP

DHForm(eV) DHForm(eV) DEForm(eV)

MoS 6.22B7.29 5.45B6.09 5.79
Mo2S2 11.15 7.95 7.54
MO2S2 — 9.81B11.09 10.49
SMo 6.65B5.58 6.11B5.47 5.77
S2

Mo
8.00 7.09 7.49

VS 2.74B1.67 2.86B2.22 2.12
VS2 — 5.63B4.34 4.14
VMo 6.98B4.84 7.28B5.99 6.20

CASTEP, Cambridge Sequential Total Energy Package; VASP, Vienna Ab-initio Simulation
Package.
The formation enthalpy is defined as DHForm¼ EDefect–EPureþ n� mRemoved–m� kmAdded. m is the
chemical potential of the removed and/or added atom to form a defect, while the formation
energy is defined asDEForm¼ ESystem–NS� ES_ML–NMo� EMo_ML, where ES_ML and EMo_ML are the
single atom energy of Mo and S in a perfect monolayer. (Please refer to the Methods section for
more details).
Different exchange-correlation functionals are used in the VASP and CASTEP codes as discussed
in the text.
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find a local magnetic moment of 2 mB in antisite MoS, while the
values for other defects, for example, VS, VS2 and MoS2, are
smaller than 0.1 mB, and hence are negligible. The magnetic
moment of 2 mB for a MoS antisite is not localized only on the
central Mo atom, with the surrounding atoms contributing
roughly 20% of the total moment probably due to the strong
hybridization among these atoms in a ‘superatom’, as shown in
the visualized total spin density (Fig. 3e). Detailed distribution of
magnetic moment is available in Supplementary Fig. 13. The
spin-resolved real-space distribution of a defect-induced state
(state 3) marked in Fig. 3d was plotted in Fig. 3f to illustrate the
origin of the magnetism. The occupied spin-up component
(yellow isosurface) is mainly composed of the dxy and dx2–y2
orbitals of the antisite Mo atom, while the unoccupied spin-down
component (cyan isosurface) is projected onto the dxy and dz2
orbitals of surrounding Mo atoms, consistent with the total spin
charge density shown in Fig. 3e. More detailed discussion on the
magnetic property of antisites are presented in Supplementary
Fig. 14 and Supplementary Note 2.

Carrier mobility in defective samples. As there have been
plentiful reports on the transport of ME MoS2-based FETs with
electron mobility 1B81 cm2V� 1 s� 1 (refs 15,16,18,26,28,43,44),
we focus on the transport properties of CVD and PVD
monolayers. Figure 4a–d presents the output and transfer char-
acteristics of fabricated FETs based on PVD and CVD MoS2,
respectively. Our transport measurements (in Fig. 4a–d) of
defective MoS2-based FETs reveal that the PVD and CVD MoS2

has electron mobility 0.5 and 11 cm2V� 1 s� 1, respectively. All
these results are well comparable with the reported mobilities of
m-MoS2 of 1B81 cm2V� 1 s� 1 for ME15,16,18,26,28,43,44,
5B45 cm2V� 1 s� 1 for CVD17,29 and the reported values of
o1 cm2V� 1 s� 1 for PVD m-MoS2 (ref. 25) respectively.

Theoretically, we focus on the effect of the defects on the
phonon-limited carrier mobilities45–47. Table 2 lists the calculated
effective masses, deformation potentials and estimated mobilities
derived based on the predicted electron mobility of
410 cm2V� 1 s� 1 in a perfect m-MoS2 (ref. 48). MoS2 samples
are usually n-type, we thus primarily focus on the electron
mobility. It is found that the phonon-limited mobility of electrons
flowing in the intrinsic conduction band is, exceptionally, nearly
unaffected by the presence of vacancies (VS or VS2), but reduced
by three times in the samples with antisite defects, whereas the
phonon-limited mobility of holes carried by the intrinsic valence
band is more sensitive to these defects and reduces roughly three
times for vacancy and more than four times for antisite. Both
vacancy and antisite are strong electron-scattering centres that
the mobility derived from the defect states (d–e and d–h) for
either electron or hole is fairly small, mostly smaller than 1 and
10 cm2V� 1 s� 1, respectively. The defect states strongly affect,
but not overwhelmingly dominate, the overall carrier mobility of
the samples, owing to the relative low density of defects and the
strongly localized defect states. On the other hand, in a real FET
device the measured mobility can be affected by the contact
resistance45 or the carrier density19. Furthermore, the trapped
charges would act as a scattering centre15,40. A hopping transport
caused by localized disorder is also observed30,33. Both can

State 1

MoS total

MoS2

1.0

0.5

–0.5

–1.0

DOS

Mo (defect)

State 2

State 1

S (defect)
S (pure)

Mo (pure)

Mo (defect)

State 3
Up

Up

Down

Down

S (defect)
S (pure)

Mo (pure)

GKMG

DOSGKMG

E
ne

rg
y 

(e
V

)
E

ne
rg

y 
(e

V
)

0.0

1.0

0.5

–0.5

–1.0

–1.5

0.0

MoS Top

State 2 TopTop

Side

Side

State 3

Side

Side

Top

Figure 3 | Electronic properties of predominant antisite defects in MoS2 monolayer. (a) Band structure and corresponding density of states (DOS) of

antisite defect MoS2.The grey bands are from normal lattice sites, similar to conduction band and valence band of perfect monolayer, while the discrete red

bands show the localized defects states. The DOS is projected onto the atoms around the defect (defect) and those in the middle plane of two adjacent

defects (pure), respectively. The grey dash line indicates the position of the Fermi Level. (b,c) Real-space distribution of the wave functions of the two

defect states below and above the Fermi energy. (d) The band structure and DOS of antisite MoS, with a similar colour scheme of a, but the two spin

components are coloured in red (spin-up) and blue (spin-down), respectively. (e) Spin density of antisite MoS, defined as rup� rdown, charge densities

rup and rdown are spin-resolved for spin-up and -down components, which are represented by yellow and blue isosurfaces, respectively. (f) Spin-resolved

real-space distribution of the wave function of the two marked defect states (State 3) in d. The isosurface value in b,c,e,f is 0.001e Bhor� 3.

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms7293 ARTICLE

NATURE COMMUNICATIONS | 6:6293 |DOI: 10.1038/ncomms7293 | www.nature.com/naturecommunications 5

& 2015 Macmillan Publishers Limited. All rights reserved.

http://www.nature.com/naturecommunications


effectively reduce the mobility of the device. Nevertheless, our
theory shows that the measured mobility is, most likely,
correlated with the primary type of defects in a sample.

Discussion
We have to address the possible influence of electron beam
irradiation on the formation of atomic defects and to distinguish
the native from irradiation-induced defects. The observed antisite
defects are believed to be native, not caused by electron beam
irradiation. We envisage that two steps are involved in the
formation of a MoS defect from a well-prepared sample, namely
the formation of a VS vacancy and Mo adatom, followed by the
capture of the Mo adatom by the S vacancy. Although sulphur
vacancy could be created by electron beam sputtering31,39, the
formation of a Mo adatom and adjacent Mo vacancy need
substantially high energy transfer from electron irradiation, which
is less likely. The in-situ experiments show that the Mo adatoms
are very mobile, but rarely jump into S vacancies to form antisite
defects (Supplementary Note 3 and Supplementary Figs 15 and 16).
On considering these experimental and simulation results, the
observed MoS and MoS2 antisites should be confidently regarded as
intrinsic defects. In terms of S vacancies, as suggested by early
studies30,31, the concentration of sulphur vacancies may be slightly

overestimated due to beam damage even if the microscope works
at low accelerating voltage (Supplementary Fig. 17).

MoS2 sheets are extensively adopted in electronic devices. These
point defects, as localized disorders, are significant scattering
centres of carriers, which may reduce the mobility of charge
carriers through the intrinsic conduction or valence band,
especially for samples with antisite defects. Therefore, growth of
ultra-high-quality m-MoS2 is of crucial importance to fabricate
high-performance electronic devices. On the other side, the
presence of defects may provide us novel routes to tailor the
properties of m-MoS2. We predicted theoretically for the first time
that antisite MoS shows a magnetic moment of 2mB. Our
prediction of local magnetic moments may promote further
investigations on the magnetic properties of defective MoS2
monolayers. Given the strong optoelectronic response of MoS2
layers with MoS defects, it is a probable material that is capable for
optical manipulation of local magnetic moment. If the defect
density goes sufficiently high, it may expect an appreciably large
magnetic exchange interaction between defects, and thus become a
promising model system for the studies of dilute-magnetic
semiconductors and 2D magnetism.

Based on these findings, we propose an application-oriented
strategy for fabricating atomically thin MoS2. In terms of electric
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Figure 4 | Electric transport of defective MoS2. (a,b) Output and transfer characteristics of PVD MoS2-based FET. (c,d) Output and transfer

characteristics of CVD MoS2-based FET.

Table 2 | Phonon-limited carrier mobility estimation of perfect and defective MoS2 monolayers.

m*/m0 E(eV) l (cm2V� 1s� 1)

e h d-e d-h e h d-e d-h e h d-e d-h

Perfect 0.40 �0.57 — — � 14.9 � 3.4 — — 410 3850 — —
VS 0.43 �0.96 35.2 105.6 � 13.9 � 3.4 �4.5 5.4 410 1390 o1 o1
VS2 0.42 � 1.2 31.1 9.2 � 13.9 � 3.1 �4.9 6.8 426 1066 o1 4
MoS 0.99 � 1.2 75.5 34.1 � 11.1 �4.0 � 3.0 � 2.9 123 631 o1 2
MoS2 0.71 � 1.1 8.8 28.6 � 13.3 � 3.6 �4.3 �6.8 164 902 10 o1

Carrier types ‘e’ and ‘h’ denote ‘electron’ and ‘hole’ for the original conduction and valence bands in perfect MoS2 monolayer, and ‘d-e’ and ‘d-h’ represent those for the defect states, respectively. m* is
carrier effective mass and E is the deformation potential. All mobilities are estimated based on the value for the electron mobility in the perfect monolayer of 410 cm2V� 1 s� 1 (ref. 48). The change of
elastic moduli of perfect and defective samples is so small, which can be safely neglected. Each defective monolayer consists of only one type of defects (either vacancy or antisite) in a 6�6 supercell,
close to an equivalent defect density revealed in the statistics.
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applications, extra S should be introduced into the growth process
or post-growth treatment, to restrain the formation of antisite
defects for PVD specimen or to heal the abundant S vacancies for
CVD and ME specimens, whereas in respect to magnetism, varied
pressure of S in the PVD growth could produce different densities
of MoSx antisites that remain to be explored for magnetic
applications.

In summary, our systematic investigation of geometric and
electronic structures of antisites and vacancies of m-MoS2 by ADF-
STEM imaging and DFT calculation has led to a considerable
progress in our understanding of the variation of the electric and
magnetic properties induced by these point defects. We have
demonstrated that minimizing point defects, especially antisites, is
paramount for electric transport applications, while controllably
introduced antisites may produce atomic size local magnetic
moments. All these results considerably improve the understanding
of point defect in atomically thin transition metal dichalcogenides
and should benefit their potential applications in optoelectronic and
nanoelectronic devices.

Methods
Sample preparations and transfer. ME m-MoS2 was prepared by micro-clea-
vage8 of natural bulk crystal (SPI Supplies) using scotch tapes. The monolayer was
identified from the optical contrast of thin flakes under an optical microscope (Zeiss
A2m) and then transferred onto copper TEM grids covered with holey carbon films.

CVD monolayers were synthesized through the reduction of precursor MoO3

by sulphur vapour flow at ambient pressures following the previously reported
method21,32. PVD MoS2 monolayers used in this study were synthesized by
thermal evaporation of MoS2 powders (Sigma-Aldrich, 99%) at a temperature of
950 �C. Ar (2 s.c.c.m.) and H2 (0.5 s.c.c.m.) were used as the carriers gases,
following the reported method in ref. 25. The pressure of the growth chamber was
about 8 Pa and the growth time was usually 10min. In terms of sample synthesis,
the advantages and disadvantages of these methods and liquid-phase exfoliation are
compared in Supplementary Table 2.

PVD and CVD MoS2 monolayers were transferred onto the TEM grid as
follows: first, the SiO2 substrates with monolayer samples were covered with
polymethyl methacrylate (PMMA) film after spin coating and then dried in air at
120 �C for 5min. The substrates were immersed into the boiling sodium hydroxide
solution (1mol l� 1), which was heated up to 200 �C to etch away the underneath
SiO2 layers. The floating PMMA film was picked up with a clean glass slide and
then transferred into the distilled water for several cycles to wash away surface
residues. In the next step, the PMMA film was lifted out by a TEM grid covered
with lacey carbon film and then dried naturally in ambient. This TEM grid was
heated at 120 �C for 5min in air before immersion into hot acetone for about 24 h,
to remove the PMMA. Before the ADF-STEM characterization, all the monolayer
specimens on TEM grids were annealed at 200 �C in air for 10min to reduce
surface residues and/or contaminations.

STEM characterization and image simulation. Most of the structural char-
acterizations of m-MoS2 were carried out with a probe-corrected Titan ChemiS-
TEM (FEI, USA). We operated this microscope at an acceleration voltage of 80 kV
to alleviate specimen damage induced by beam radiation. A low probe current was
selected (o70 pA) and the convergence angle was set to be 22mrad. Under such a
condition, the probe size was estimated to be close to 1.5 Å. To enhance the
contrast of the sulphur sublattices, the so-called medium-range ADF mode rather
than the high-angle ADF mode was used by adjusting the camera length properly.
Some experiments (such as Figs 1a and 2a–c) were done with an ARM 200CF
(JEOL, Japan), equipped with a cold field-emission gun. The advantage of higher
energy resolution (0.3 eV) and smaller probe size (o1.2 Å) provides higher reso-
lution, thus giving rise to sharper contrast of the atomic images. All the experi-
mental images shown in the main text and Supplementary Information were
filtered through the standard Wiener deconvolution to partially remove the
background noise for a better display (Supplementary Fig. 10).

It should be noted that intrinsic adatom defects were seldom observed
experimentally and, therefore, they are not considered here. All the image statistics
were done on the clean regions of the examined samples by ADF–STEM. On
considering the good homogeneity of these samples prepared under the optimized
conditions (see Supplementary Information), it shall not lead any large variations
in the analysed defect population.

STEM–ADF image simulations of relaxed antisite defects were done by software
QSTEM49. The input parameters were set according to the experimental
conditions. Probe size, convergence angle and acceptance angle of the ADF
detector are critical and accounted for in the image simulation.

DFT calculations. The defect formation enthalpy for the first column of Table 1
was calculated using the total energy method with the plane-wave pseudopotential
DFT code CASTEP41. The basic methodology is well known and has been widely
used before for defect calculations. In this study, the Perdew-Burke-Ernzerhof-
generalized gradient approximation50 with ultrasoft potentials is used, as supplied
in the CASTEP library. In addition, the dispersion interactions were added using
the semi-empirical scheme of Grimme51. Structural optimizations of both ionic
positions and cell vectors are performed using a modified Broyden-Fletcher-
Goldfarb-Shanno-like scheme. The calculations were performed in a slab geometry
of a 6� 6 supercell of m-MoS2 with a 15 Å vacuum space in the c axis direction
perpendicular to the monolayer. A comparative study of the defect formation
enthalpy and energy, together with the electronic and magnetic properties were
also done by VASP simulation code42 using the same slab model. The projector
augmented-wave method52 combined with a plane wave basis is adopted in the
calculations. The energy cutoff for plane wave is 400 eV in structural relaxation and
increases to 500 eV while calculating the energy and electronic properties. The
optB86b exchange functional53 together with the vdW correlation54,55 was adopted
for exchange-correlation functional. The Brillouin zone of the supercell is sampled
by a 3� 3� 1 k-mesh. All these structures are fully relaxed until the residual force
for each atom is less than 0.02 eVÅ� 1.

Estimation of formation energy and enthalpy. The formation energy was
defined as, DEForm¼ ESystem–NS� ES_ML–NMo� EMo_ML, where ES_ML¼ES(single)
þ EBond, EMo_ML¼ EMo(single)þ 2EBond and EBond¼ (EML–EMo(single)� 2ES(single))/3.
Formation enthalpy of defects is defined as DHForm ¼ EDefect �EPure þ n�
mRemoved �m� mAdded, where mRemoved and mAdded are the chemical potentials of the
removed and added atoms to form a defect, respectively. Chemical potentials of Mo
and S in MoS2 fulfill the equation mMo þ 2mS ¼ m�Mo þ 2m�S þDHMoS2 , where m*Mo is
the chemical potential of Mo in the bulk form, m*S is the chemical potential of S in
the a-phase crystal form and DHMoS2 is the formation enthalpy of MoS2. Although
it is difficult to obtain the exact values of mMo and mS, the range of them can be
deduced as m�Mo þDHMoS2 � mMo � m�Mo, m

�
S þ 1

2DHMoS2 � mS � m�S .
There are two formation enthalpy values in Table 1, the former one was

computed by choosing mMo and mS equal to m*Mo and m*S, respectively, indicating that
the removed (added) atoms come from (go to) the pure bulk form of Mo and S. For
the latter value, we set mMo ¼ m�Mo þ 0:5�DHMoS2 and ms ¼ m�s þ 0:25�DHMoS2 . In
this case, the source and drain of defect atoms are pure MoS2 ML. For antisite defects
MoS2 and S2Mo, both schemes give the same result.

Estimation of ‘phonon-limited’ carrier mobility. In 2D, the carrier mobility is
given by the expression45–47

m2D ¼ e‘ 3C2D

kBTm�
emd Ei

1ð Þ2
ð1Þ

where m�
e is the effective mass in the transport direction and md is the average

effective mass determined by md ¼ ffiffiffiffiffiffiffiffiffiffiffiffi
m�

xm
�
y

p
. The term E1 represents the

deformation potential constant of the valence-band maximum for holes or
conduction-band minimum for electrons along the transport direction, defined by
Ei
1 ¼ DVi= Dl=l0ð Þ. Here DVi is the energy change of the ith band under proper cell

compression and dilatation, l0 is the lattice constant in the transport direction and
Dl is the deformation of l0.

FET fabrication and transport. The monolayer MoS2-based FET devices are
fabricated through the following process. First, source (S) and drain (D) electrodes
of the devices were defined via e-beam lithography and a 5/45 nm Ti/Au film was
then evaporated followed by a standard lift-off process. In addition, the back-gated
MoS2 FETs were then finished. Second, the top-gated devices were begun with
forming gate insulator. Gate oxide layer (30 nm HfO2 film) was grown under 90 �C
through Atomic Layer Deposition (Cambridge NanoTech Inc.). Lastly, the gate
electrode window was also defined by e-beam lithography, followed by evaporation
of 5 nm Ti and 45 nm Au thin film, and the top-gated MoS2 FETs are finished after
a lift-off process. The as-fabricated devices were measured through Keithley 4200
semiconductor analyser on a probe station at room temperature and in air. An
example of the device architecture is shown in Supplementary Fig. 18.
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